Skip to main content

Exponentiell Gewichtete Gleitende Durchschnittspandas

Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme für das Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, finden Sie unter Verwenden von Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächlichen Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Also, wenn alpha (a) ein Gewichtungsfaktor (speziell eine 1m) ist, dann eine einfache Varianz sieht etwa so aus: Die EWMA verbessert auf einfache Varianz Die Schwäche dieser Ansatz ist, dass alle Renditen das gleiche Gewicht zu verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Aktienkursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkende Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Glättung mit exponentiell gewichteten Bewegungsdurchschnitten Ein gleitender Durchschnitt nimmt eine laute Zeitreihe und ersetzt jeden Wert mit dem Mittelwert einer Nachbarschaft um den gegebenen Wert. Diese Nachbarschaft kann aus rein historischen Daten bestehen oder um den gegebenen Wert zentriert sein. Ferner können die Werte in der Nachbarschaft mit verschiedenen Sätzen von Gewichtungen gewichtet werden. Hier ist ein Beispiel eines gleich gewichteten Dreipunkt-Gleitendurchschnitts, wobei historische Daten verwendet werden: Hier steht das geglättete Signal und stellt die verrauschten Zeitreihen dar. Im Gegensatz zu einfachen gleitenden Durchschnitten passt ein exponentiell gewichteter gleitender Durchschnitt (EWMA) einen Wert gemäß einer exponentiell gewichteten Summe aller vorherigen Werte an. Dies ist die Grundidee, Dies ist schön, weil Sie don.. 17 17 t haben, um über ein Drei-Punkt-Fenster, im Vergleich zu einem Fünf-Punkte-Fenster Sorge oder Sorgen über die Angemessenheit Ihrer Gewichtung. Bei der EWMA vergingen vorherige Störungen 8220, 8221 und 8220l vergessen, 8221 durch den Begriff in der letzten Gleichung, wohingegen bei einem Fenster oder einer Nachbarschaft mit diskreten Grenzen eine Störung vergessen wird, sobald sie aus dem Fenster austritt. Mittelung der EWMA, um Trends aufzuspüren Nach dem Lesen über EWMAs in einem Datenanalyse-Buch, war ich glücklich gegangen mit diesem Tool auf jede einzelne Glättung Anwendung, die ich stieß. Erst später erfuhr ich, dass die EWMA-Funktion wirklich nur für stationäre Daten geeignet ist, d. H. Daten ohne Trends oder Saisonalität. Insbesondere die EWMA-Funktion widersteht Trends weg von der aktuellen Mittelwert, dass es8217s bereits 8220seen8221. Wenn Sie also eine laute Hutfunktion haben, die von 0, 1 und dann wieder 0 zurückkehrt, gibt die EWMA-Funktion niedrige Werte auf der Aufstiegsseite und hohe Werte auf der Abwärtsseite wieder. Eine Möglichkeit, dies zu umgehen, besteht darin, das Signal in beide Richtungen zu glätten, nach vorn zu marschieren und dann rückwärts zu marschieren, und dann die beiden durchschnittlich zu vergleichen. Hier verwenden wir die EWMA-Funktion des pandas-Moduls. Holt-Winters Zweite Ordnung EWMA Und hier ist ein Python-Code implementiert die Holt-Winters zweite Ordnung Methode auf eine andere laute Hut Funktion, wie zuvor. Post navigation Recent PostsComputerwerkzeuge Analog hat DataFrame eine Methode cov, um paarweise Kovarianzen unter den Reihen im DataFrame zu berechnen, auch ohne NAnull-Werte. Angenommen, daß die fehlenden Daten zufällig fehlen, ergibt sich eine Abschätzung für die Kovarianzmatrix, die unbestimmt ist. Für viele Anwendungen ist diese Schätzung jedoch nicht akzeptabel, da die geschätzte Kovarianzmatrix nicht als positiv halbdefinit garantiert ist. Dies könnte zu geschätzten Korrelationen mit Absolutwerten führen, die größer als eins sind, undeine nicht-invertierbare Kovarianzmatrix. Siehe Schätzung von Kovarianzmatrizen für weitere Details. DataFrame. cov unterstützt auch ein optionales Schlüsselwort minperiods, das die erforderliche Mindestanzahl von Beobachtungen für jedes Spaltenpaar angibt, um ein gültiges Ergebnis zu haben. Die Gewichte, die in dem Fenster verwendet werden, werden durch das wintype Schlüsselwort spezifiziert. Die Liste der anerkannten Arten sind: boxcar triang blackman hamming bartlett parzen bohman blackmanharris nuttall barthann kaiser (muss beta) Gaußscher (benötigt std) generalgaussian (braucht Leistung, Breite) slepian (braucht Breite). Beachten Sie, dass das Boxcar-Fenster dem Mittelwert () entspricht. Für einige Fensterfunktionen müssen zusätzliche Parameter angegeben werden: Für. sum () mit einem Wintype. Erfolgt keine Normalisierung der Gewichte für das Fenster. Das Übergeben von benutzerdefinierten Gewichten von 1, 1, 1 ergibt ein anderes Ergebnis als Durchgehen von Gewichten von 2, 2, 2. zum Beispiel. Beim Übergeben eines Wintype anstelle der expliziten Spezifizierung der Gewichte sind die Gewichte bereits normalisiert, so dass das größte Gewicht 1 ist. Im Gegensatz dazu ist die Natur der & agr; () - Rechnung so, dass die Gewichte in Bezug aufeinander normalisiert werden. Gewichte von 1, 1, 1 und 2, 2, 2 ergeben das gleiche Ergebnis. Zeitbewusstes Rollen Neu in Version 0.19.0. Neu in Version 0.19.0 sind die Möglichkeit, einen Offset (oder Cabrio) in eine. rolling () - Methode zu überführen und haben es produzieren Fenster variabler Größe auf der Grundlage der übergebenen Zeitfenster. Zu jedem Zeitpunkt gehören dazu alle vorangehenden Werte innerhalb der angegebenen Zeit delta. Dies kann insbesondere für einen nicht-regelmäßigen Zeitfrequenzindex nützlich sein. Dies ist ein regelmäßiger Frequenzindex. Mit einem Integer-Fenster-Parameter arbeitet, um über die Fenster-Frequenz rollen. Das Angeben eines Versatzes ermöglicht eine intuitivere Spezifikation der Rollfrequenz. Mit einem nicht-regulären, aber immer noch monotonen Index, rollt mit einem Integer-Fenster keine besondere Berechnung. Die Zeitspezifikation erzeugt variable Fenster für diese spärlichen Daten. Darüber hinaus erlauben wir nun einen optionalen Parameter, um eine Spalte (und nicht die Vorgabe des Index) in einem DataFrame anzugeben. Time-aware Rolling vs. Resampling Die Verwendung von. rolling () mit einem zeitbasierten Index ist vergleichbar mit dem Resampling. Sie betreiben und führen reduktive Operationen an zeitindizierten Pandabildungen durch. Bei Verwendung von. rolling () mit einem Offset. Der Versatz ist ein Zeit-Dreieck. Nehmen Sie ein nach hinten schauendes Fenster und aggregieren Sie alle Werte in diesem Fenster (einschließlich des Endpunkts, aber nicht des Startpunkts). Dies ist der neue Wert an diesem Punkt im Ergebnis. Dies sind Fenster mit variabler Größe im Zeitraum für jeden Punkt der Eingabe. Sie erhalten ein gleich großes Ergebnis wie die Eingabe. Bei Verwendung von. resample () mit einem Offset. Konstruieren Sie einen neuen Index, der die Frequenz des Offsets ist. Für jede Frequenz bin, Aggregat Punkte aus dem Eingang innerhalb eines Rückwärts-in-Zeit-Fenster, die in diesem bin fallen. Das Ergebnis dieser Aggregation ist die Ausgabe für diesen Frequenzpunkt. Die Fenster sind feste Größe im Frequenzraum. Ihr Ergebnis hat die Form einer regelmäßigen Frequenz zwischen dem minimalen und dem maximalen Wert des ursprünglichen Eingabeobjekts. Zusammenfassen. Rolling () ist eine zeitbasierte Fensteroperation, während. resample () eine frequenzbasierte Fensteroperation ist. Zentrieren von Windows Die Etiketten werden standardmäßig auf den rechten Rand des Fensters gesetzt, aber ein zentrales Schlüsselwort ist verfügbar, so dass die Beschriftungen in der Mitte festgelegt werden können. Binäre Fensterfunktionen cov () und corr () können die Bewegungsfensterstatistiken über zwei Serien oder eine beliebige Kombination von DataFrameSeries oder DataFrameDataFrame berechnen. Hier ist das Verhalten in jedem Fall: zwei Serien. Berechnen Sie die Statistik für die Paarung. DataFrameSeries. Berechnen Sie die Statistik für jede Spalte des DataFrame mit der übergebenen Reihe, sodass ein DataFrame zurückgegeben wird. DataFrameDataFrame. Berechnen Sie standardmäßig die Statistik für passende Spaltennamen und geben Sie ein DataFrame zurück. Wenn das Schlüsselwortargument pairwiseTrue übergeben wird, wird die Statistik für jedes Paar von Spalten berechnet, wobei ein Panel zurückgegeben wird, dessen Elemente die betreffenden Daten sind (siehe nächster Abschnitt). Computing rollen paarweise Kovarianzen und Korrelationen In der Finanzdatenanalyse und anderen Bereichen ist es üblich, Kovarianz und Korrelationsmatrizen für eine Sammlung von Zeitreihen zu berechnen. Oft interessiert man sich auch für Verschiebungsfensterkovarianz und Korrelationsmatrizen. Dies kann getan werden, indem das paarweise Schlüsselwortargument übergeben wird, was im Fall von DataFrame-Eingaben zu einem Panel führt, dessen Elemente die betreffenden Daten sind. Im Falle eines einzelnen DataFrame-Arguments kann das paarweise Argument sogar weggelassen werden: Fehlende Werte werden ignoriert und jeder Eintrag wird mit den paarweise vollständigen Beobachtungen berechnet. Bitte beachten Sie die Kovarianz-Abschnitt für die Vorbehalte in Verbindung mit dieser Methode der Berechnung von Kovarianz und Korrelation Matrizen. Abgesehen davon, dass sie keinen Fensterparameter haben, haben diese Funktionen dieselben Schnittstellen wie ihre. rolling-Pendants. Wie oben, sind die Parameter, die sie alle akzeptieren: minperiods. Schwelle von Nicht-Null-Datenpunkten erfordern. Standardwerte für die Berechnung der Statistik. Es werden keine NaNs ausgegeben, sobald minperiods Nicht-Null-Datenpunkte gesehen wurden. Center. Boolean, ob die Beschriftungen in der Mitte gesetzt werden sollen (default ist False) Die Ausgabe der Methoden. rolling und. expanding gibt kein NaN zurück, wenn mindestens minperiods Nicht-Nullwerte im aktuellen Fenster vorhanden sind. Dies unterscheidet sich von cumsum. Cumprod Cummax Und cummin. Die NaN in dem Ausgang zurückgeben, wo immer ein NaN in dem Eingang angetroffen wird. Eine expandierende Fensterstatistik ist stabiler (und weniger reagierend) als ihr Rollfenster-Gegenstück, da die zunehmende Fenstergröße die relative Auswirkung eines einzelnen Datenpunkts verringert. Als Beispiel ist hier die mittlere () Ausgabe für den vorherigen Zeitreihendatensatz: Exponentiell gewichtete Fenster Ein verwandter Satz von Funktionen sind exponentiell gewichtete Versionen von mehreren der obigen Statistiken. Eine ähnliche Schnittstelle zu. rolling und. expanding wird über die. ewm-Methode aufgerufen, um ein EWM-Objekt zu empfangen. Es werden eine Anzahl expandierender EW-Methoden (exponentiell gewichtet) bereitgestellt:


Comments

Popular posts from this blog

Forex Kein Depositkonto 2013

Forex Broker-Turnier Teilnahme an der FreeRoll Forex-Turniere und beweisen, dass der beste Trader bei Forex Broker Inc. VIP-Status-Konten Erleben Sie die VIP-Behandlung mit hervorragenden Leistungen WILLKOMMEN BONUSE Erhalten Sie erstaunliche Boni mit Ihrem First Deposit Loyalty BONUS Forex Broker Inc. bietet seine wertvollen Kunden Ein Treuebonus bis zu 3500 VIP-Status Kontoinhaber, Kaution bei Bank Wire und profitieren Sie von der Raffle jeden Monat 300 Nonfarm Payroll Wettbewerb Gewinnen Sie 300 Bonus in Ihrem Live MT4 Trading-Konto durch die Vorhersage NFP-Figur Bevor Sie sich entscheiden, Forex oder Optionen zu handeln, Ist es sehr ratsam, dass Sie Ihre finanzielle Lage zu bewerten und zu berücksichtigen, wenn Sie geeignet sind, sich in Handelsaktivitäten. Sie müssen anerkennen, dass der Handel auf diesen Märkten ein hohes Maß an Belohnungen, aber am wichtigsten ist - Risiko. Unsere gut ausgebildete professionelle Client-Support-Team ist auf einer 245 Basis, um Sie bei allen techn...

Aktienoptionen Steuerliche Behandlung Für Unternehmen

Wenn Sie eine Option erhalten, Aktien als Zahlung für Ihre Dienstleistungen zu kaufen, können Sie Einkommen haben, wenn Sie die Option erhalten, wenn Sie die Option ausüben oder wenn Sie über die Option oder den Bestand verfügen, der bei der Ausübung der Option erhalten wurde. Es gibt zwei Arten von Aktienoptionen: Optionen, die im Rahmen eines Mitarbeiteraktienplans oder eines Anreizoptionsplans (ISO-Plan) gewährt werden, sind gesetzliche Aktienoptionen. Aktienoptionen, die weder im Rahmen eines Mitarbeiteraktienplans noch eines ISO-Plans gewährt werden, sind nicht statutarische Aktienoptionen. Siehe Publikation 525. Steuerpflichtiges und unentschuldbares Einkommen. Ob Sie eine gesetzliche oder nicht rechtsfähige Aktienoption erhalten haben. Gesetzliche Aktienoptionen Wenn Ihr Arbeitgeber gewährt Ihnen eine gesetzliche Aktienoption, Sie in der Regel enthalten keine Menge in Ihrem Bruttoeinkommen, wenn Sie erhalten oder die Ausübung der Option. Sie können jedoch in dem Jahr, in dem Sie...

Aktienoptionshandel Für Anfänger

Ein Leitfaden der Option Trading-Strategien für Anfänger Optionen sind bedingte Derivate-Verträge, die Käufern der Verträge a. k.a der Optionsinhaber zu ermöglichen, zu kaufen oder zu verkaufen, ein Wertpapier zu einem gewählten Preis. Option Käufer werden einen Betrag genannt eine Prämie von den Verkäufern für ein solches Recht berechnet. Sollten die Marktpreise für Optionsinhaber ungünstig sein, werden sie die Option wertlos verlieren und somit sicherstellen, dass die Verluste nicht höher liegen als die Prämie. Im Gegensatz dazu nehmen Option Verkäufer, a. k.a Option Schriftsteller ein größeres Risiko als die Option Käufer, weshalb sie diese Prämie verlangen. (Lesen Sie mehr über: Optionen Grundlagen). Die Optionen werden in Call - und Put-Optionen unterteilt. Eine Call-Option besteht darin, dass der Käufer des Kontrakts das Recht kauft, den zugrunde liegenden Vermögenswert künftig zu einem vorgegebenen Kurs, dem Ausübungspreis oder Ausübungspreis, zu kaufen. Eine Put-Option besteht ...