Ein Hybrid des nichtlinearen autoregressiven Modells mit exogenem Eingang und autoregressivem gleitendem Durchschnittsmodell für die langfristige Maschinenzustandsvorhersage Dieses Papier stellt eine Verbesserung des hybriden nichtlinearen autoregressiven Modells mit exogenem Input - (NARX) - Modell und autoregressivem Moving Average (ARMA) - Modell für Langzeit dar Maschinenzustandsvorhersage basierend auf Vibrationsdaten. In dieser Studie werden Schwingungsdaten als eine Kombination von zwei Komponenten betrachtet, die deterministische Daten und Fehler sind. Die deterministische Komponente kann den Degradationsindex der Maschine beschreiben, während die Fehlerkomponente das Auftreten unsicherer Teile darstellen kann. Ein verbessertes Hybrid-Prognosemodell, nämlich das NARXndashARMA-Modell, wird durchgeführt, um die Prognoseergebnisse zu erhalten, in denen ein NARX-Netzmodell, das für ein nichtlineares Problem geeignet ist, zur Prognose der deterministischen Komponente und des ARMA-Modells verwendet wird, um die Fehlerkomponente aufgrund geeigneter Fähigkeiten vorherzusagen In der linearen Vorhersage. Die endgültigen Prognoseergebnisse sind die Summe der Ergebnisse dieser einzelnen Modelle. Die Leistung des NARXndashARMA-Modells wird dann unter Verwendung der Daten des Niedrig-Methan-Kompressors ausgewertet, die von der Zustandsüberwachungsroutine erhalten werden. Um die Fortschritte der vorgeschlagenen Methode zu bestätigen, wird eine vergleichende Untersuchung der Prognoseergebnisse des NARXndashARMA-Modells und der traditionellen Modelle durchgeführt. Die Vergleichsergebnisse zeigen, dass das NARXndashARMA-Modell hervorragend ist und als potentielles Werkzeug zur Maschinenzustandsprognose eingesetzt werden kann. Autoregressiver gleitender Durchschnitt (ARMA) Nichtlineare autoregressive mit exogenem Eingang (NARX) Langfristige Vorhersage Maschinenzustandsvorhersage Entsprechender Autor. Tel. 82 51 629 6152 Fax: 82 51 629 6150. Copyright 2009 Elsevier Ltd. Alle Rechte vorbehalten. Cookies werden von dieser Website verwendet. Weitere Informationen finden Sie auf der Cookieseite. Copyright 2017 Elsevier B. V. oder seine Lizenzgeber oder Mitwirkenden. ScienceDirect ist ein eingetragenes Warenzeichen von Elsevier BVVector Atoregressiver Moving Average mit exogenen Inputs (VARMAX) Stats Zuweisung Hausaufgabenhilfe Atoregressive Moving Average mit exogenen Eingängen (VARMAX) Assignment Help Die VARMAX-Behandlung schätzt die Designanforderungen und erzeugt Prognosen, die mit Vektor autoregressive Moving - Durchschnittlichen Behandlungen mit exogenen Regressoren (VARMAX) Designs. Die VARMAX-Behandlung ermöglicht es Ihnen, die dynamische Beziehung zwischen den abhängigen Variablen und ähnlich zwischen den abhängigen und unabhängigen Variablen zu entwickeln. VARMAX-Designs werden in Anliegen der Befehle der gleitenden durchschnittlichen oder autoregressiven Behandlung (oder beides) definiert. Wenn Sie von der VARMAX Behandlung Gebrauch machen, können diese Aufträge durch Optionen angegeben werden, oder sie können sofort herausgefunden werden. Anforderungen für die schnelle Bestimmung dieser Aufträge umfassen die folgenden: 8211 Akaike8217s Details Nachfrage (AIC). 8211 Fixed AIC (AICC). 8211 Hannan-Quinn (HQ) Nachfrage. 8211 Letzter Projektionsfehler (FPE). - Schwarz Bayesian Nachfrage (SBC), die so genannte Bayesian Details Nachfrage (BIC). Der Zustand-Raum Fundament dieser Behandlungen Materialien Anpassungsfähigkeit, wie sie genutzt werden können, um jede lineare feste Koeffizienten Design, wie ARIMA, VARMAX oder strukturelle Zeitreihen Designs. Eine Simulationsübung macht aus, dass ihre Rechenkosten und ihre Finite-Sample-Leistung außergewöhnlich sind. Reisende müssen Modellierung und Prognose sind wichtig für tourismusbezogene Business-Option machen. Dieses Beispiel zeigt Modellierung Reisende benötigen die Verwendung der VARMAX Behandlung. Durch die Verwendung eines VARMAX-Entwurfs wird eine beschränkte Beschreibung der Eingangs-Ausgangs-Beziehung hergestellt. Eine ausgedehnte Kleinste-Quadrate-Rekursion wird verwendet, um die Markov-Anforderungen im VARMAX-Design-Set zu approximieren. Die VARMAX-Klasse in Statsmodels ermöglicht die Preisangabe von VAR-, VMA - und VARMA-Designs (über das Auftragsargument), zusätzlich mit einem konstanten Begriff (durch das Dreiglied). Exogene Regressoren können ebenso aufgenommen werden (wie in Statsmodellen üblich, durch das Exon-Argument), und in dieser Technik kann ein Zeitmuster bestehen. Die Klasse macht es möglich, Messfehler (nach Methoden des Arguments Messfehler) und ermöglicht die Angabe entweder eine diagonale oder chaotisch fortschrittliche Kovarianzmatrix. Es ist beliebt, dass jede VARMAX-Behandlung in einem ähnlichen Zustand-Raum (SS) gemacht werden kann. Es ist natürlich, zu fragen, ob es möglich ist, die invertierte Modifikation durchzuführen, d. H. Die Koeffizienten der VARMAX-Konstruktion zu erhalten, die äquivalent zu einer bereitgestellten SS-Darstellung ist. Unsere Ergebnisse liefern eine positive Reaktion auf diese Frage, und als Ladung ist die Wahl zwischen beiden Darstellungen nur eine Frage von Vorteil. Gesucht nach Koeffizienten State-Space und VARMAX Designs sind ähnlich, was zeigt, dass sie die Fähigkeit haben, die präzise gleichen linearen Qualitäten zu repräsentieren, die in Anliegen zu insgesamt passen. Jede Darstellung kann für spezifische Verwendungen spezifisch sein, also hat sie die Fähigkeit, zwischen ihnen zu wählen. VARX - und VARMAX-Konstruktionen sind Erweiterungen der VAR - und VARMA-Struktur, wodurch exogene (8216X8217) Variablen möglich sind, deren Eigenschaften nicht definiert sind oder deren Qualitäten ein Minimum nicht von den etablierten 8216endogenen8217-Variablen y abhängen. Für die Prognose benötigen die X-Variablen eine Extrapolationsstrategie oder Erwartungen an ihre zukünftigen Regimen. Wenn Sie die automatische Auftragswahl nicht nutzen wollen, bietet die VARMAX-Behandlung folgende autoregressive Auftragsbestätigungen an :. 8211 Teilweise Kreuzkorrelationen. 8211 Yule-Walker zitiert. 8211 Teilweise autoregressive Koeffizienten. 8211 Teilweise kanonische Verbindungen. Für Situationen, in denen die Stationarität der Zeitreihe weiterhin in Frage gestellt wird, liefert die VARMAX-Behandlung Tests, um das Vorhandensein von Gadget-Wurzeln und Co-Mix zu unterstützen. Diese Tests umfassen die folgenden :. 8211 Dickey-Fuller-Tests. 8211 Johansen-Kointegrationstest für Nicht-Setvektorbehandlungen von gebündelter Ordnung. 8211 Stock-Watson gemeinsame Muster Test für die Möglichkeit der Co-Mix unter Nicht-Satz Vektor-Behandlungen der gebündelten Auftrag ein. 8211 Johansen-Kointegrationstest für nicht eingestellte Vektorbehandlungen von gebündelter Ordnung 2. Um die Bedenken der hohen Dimensionalität in den Anforderungen des VAR-Entwurfs zu bewältigen, liefert die VARMAX-Behandlung sowohl das Vektorfehlerkorrekturdesign (VECM) als auch das bayesische Vektorfehlerkorrekturdesign BVECM). Die VARMAX-Behandlung erlaubt in ähnlicher Weise, dass unabhängige (exogene) Variablen mit ihren dispergierten Verzögerungen abhängige Variablen in vielen Konstruktionen wie VARMAX, BVARX, VECMX und BVECMX beeinflussen können. Die Prognose gehört zu den Hauptzielen der multivariaten Zeitreihenanalyse. Nach der effizienten Anpassung der VARMAX-, BVARX-, VECMX - und BVECMX-Modelle wartet der VARMAX-Behandlungsrechner auf Werte, die auf den Anforderungszinssätzen und den bisherigen Werten der Vektor-Zeitreihen basieren. Die Prüfverfahren für die Prüfverfahren sind:. 8211 Leastplätze. 8211 Optimale Möglichkeit. Das primäre Ziel dieser Forschungsstudie ist es, einen Vektor autoregressiven gleitenden Durchschnitt mit exogenen Variablen (VARMAX) Design zu einer Auto-assoziierten Behandlung zu nutzen, um ein Auge auf eine solche Behandlung durch ein Kontrolldiagramm zu halten. Insbesondere wird ein VARMAX-Design an die in-control historischen Behandlungsdetails offline angepasst und Residuen können basierend auf der gesammelten Beobachtung und dem VARMAX-Design berechnet werden. Es wird angenommen, dass die Residuen der gemeinsamen Verteilung folgen und unabhängig sein müssen, ein multivariates Kontrolldiagramm für die Residuen verwendet werden kann. Die VARMAX Behandlung Materialien viele Hypothesen Tests von langfristigen Ergebnissen und Anpassungskoeffizienten die Nutzung der Möglichkeit Ratio-Test auf der Grundlage Johansen co Kombination Analyse. Die VARMAX-Behandlung bietet die Möglichkeit Ratio-Test der schwachen Exogenität für jede Variable. Die VARMAX-Behandlung unterstützt verschiedene Modellierungsfunktionen, einschließlich der folgenden :. 8211 Saisonale deterministische Begriffe. 8211 Subset-Designs. 8211 Viele Regression mit dispergierten Verzögerungen. 8211 Totpunktgestaltung, die keine aktuellen Werte der exogenen Variablen aufweist. 8211 GARCH-Typ multivariate bedingte Heterosedastizität Designs. Die VARMAX-Behandlung schätzt die Designanforderungen und entwickelt Schätzungen im Zusammenhang mit vektorautoregressiven Moving-Average-Behandlungen mit exogenen Regressoren (VARMAX). Die VARMAX-Behandlung ermöglicht auch unabhängige Variablen mit ihren dispergierten Lags Einfluss auf abhängige Variablen in vielen Designs wie VARMAX, BVARX, VECMX und BVECMX Designs. Insbesondere wird ein VARMAX-Design an die in-control historische Behandlung info offline angepasst und Residuen können basierend auf der gesammelten Beobachtung und dem VARMAX-Design berechnet werden. VARMAX-Designs werden in Anliegen der Befehle der gleitenden durchschnittlichen oder autoregressiven Behandlung (oder beides) definiert. Die VARMAX-Klasse in Statsmodels ermöglicht es, Preisvoranschläge von VAR-, VMA - und VARMA-Designs (über das Auftragsargument), ferner mit einem konstanten Term (durch das Trendargument). Es ist natürlich, zu fragen, ob es möglich ist, die invertierte Modifikation hervorzubringen, d. h. die Koeffizienten des VARMAX-Entwurfs beobachtungsmäßig äquivalent zu einer bereitgestellten SS-Darstellung zu erhalten. Das äußerst erste Ziel dieser Forschungsstudie ist es, einen vektorautoregressiven gleitenden Durchschnitt mit exogenen Variablen (VARMAX) Design zu einer Auto-assoziierten Behandlung zu nutzen, um eine solche Behandlung durch ein Kontrolldiagramm zu verfolgen. Insbesondere wird ein VARMAX-Design an die in-control historischen Behandlungsdetails offline angepasst und Residuen können basierend auf der gesammelten Beobachtung und dem VARMAX-Design berechnet werden. Wir bieten erfahrene Unterstützung für Vektor autoregressive gleitenden Durchschnitt mit exogenen Eingaben Job oder Vector autoregressive gleitenden Durchschnitt mit exogenen Eingaben Forschung Studie. Vector autoregressive gleitenden Durchschnitt mit exogenen Eingaben Online-Tutoren sind schnell bereitgestellt 247 zu liefern Task-Unterstützung zusätzlich zu Vektor autoregressive gleitenden Durchschnitt mit exogenen Eingaben Forschung Studienhilfe. Zugehörige Statistiken Zuordnungen Zeitreihenanalyse und Vorhersage Vektor-Fehlerkorrektur (VEC) Vektor Autoregressive (VAR) Verwendungen der Zeitreihe Exponential GARCH (EGARCH) Nichtstationäre und differenzierende Spektralanalyse Stationarität Vektor Autoregressiver Moving Average (VARMA) ARMAX Modellierung ARMAX ist im Wesentlichen a Lineares Regressionsmodell, das ein ARMA-i-Typ-Modell für Residuen verwendet. Die Eingangszeitreihen und die exogenen Variablen müssen entweder alle stationär oder kointegriert sein. Der ARMAX Model Wizard in NumXL automatisiert die Modellierungsschritte: Ermitteln von Anfangsparametern, Parametervalidierung, Güteprüfung und Restdiagnose. Um diese Funktionalität zu nutzen, markieren Sie eine leere Zelle in Ihrem Arbeitsblatt und wählen das ARMAX-Symbol auf der Symbolleiste (oder dem Menüpunkt): Der NumXL ARMAX Model Wizard erscheint. Standardmäßig ist die Ausgabe so eingestellt, dass sie die aktiven Zellen in Ihrem Arbeitsblatt verweist. Als nächstes wählen oder zeigen Sie auf den Zellenbereich, in dem Sie die Eingabe (abhängige) Datenprobe und die exogenen (erklärenden unabhängigen) Variablen in Ihrem Arbeitsblatt speichern. Sobald Sie die Eingabedaten ausgewählt haben, sind die Registerkarten Modell und Optionen aktiviert. Klicken Sie nun auf die Registerkarte Modell. Bei ARMAX halten wir das Kontrollkästchen "Saison" unkontrolliert und setzen den nicht-saisonalen Integrationsordner auf Null (Standard). Wählen Sie die entsprechende Reihenfolge des autoregressiven (AR) Komponentenmodells und die Reihenfolge des gleitenden durchschnittlichen Komponentenmodells aus. Klicken Sie nun auf die Registerkarte Optionen. Auf dieser Registerkarte können wir den Modell-Assistenten anweisen, ob Güte - und Restdiagnosetabellen erzeugt werden sollen. Wir können auch bestimmen, wie die Werte der Modellparameter initialisiert werden sollen, entweder mit einer schnellen Vermutung oder mit kalibrierten optimalen Werten. Hinweis: Standardmäßig generiert der Modell-Assistent eine schnelle Vermutung der Werte der Modellparameter, aber der Benutzer kann kalibrierte Werte für die Modellkoeffizienten erzeugen. Nach Abschluss gibt die ARMAX-Modellierungsfunktion die ausgewählten Modellparameter und ausgewählte Testskalkulationen an der vorgesehenen Position des Arbeitsblatts aus. Der ARMAX-Assistent fügt den Beschriftungszellen Excel-artige Kommentare (rote Pfeilköpfe) hinzu, um sie zu beschreiben.
Wenn Sie eine Option erhalten, Aktien als Zahlung für Ihre Dienstleistungen zu kaufen, können Sie Einkommen haben, wenn Sie die Option erhalten, wenn Sie die Option ausüben oder wenn Sie über die Option oder den Bestand verfügen, der bei der Ausübung der Option erhalten wurde. Es gibt zwei Arten von Aktienoptionen: Optionen, die im Rahmen eines Mitarbeiteraktienplans oder eines Anreizoptionsplans (ISO-Plan) gewährt werden, sind gesetzliche Aktienoptionen. Aktienoptionen, die weder im Rahmen eines Mitarbeiteraktienplans noch eines ISO-Plans gewährt werden, sind nicht statutarische Aktienoptionen. Siehe Publikation 525. Steuerpflichtiges und unentschuldbares Einkommen. Ob Sie eine gesetzliche oder nicht rechtsfähige Aktienoption erhalten haben. Gesetzliche Aktienoptionen Wenn Ihr Arbeitgeber gewährt Ihnen eine gesetzliche Aktienoption, Sie in der Regel enthalten keine Menge in Ihrem Bruttoeinkommen, wenn Sie erhalten oder die Ausübung der Option. Sie können jedoch in dem Jahr, in dem Sie...
Comments
Post a Comment